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Abstract
Gravitational wave parameter estimation is an
area of research that has been explored for many
years. Researchers have long worked on develop-
ing methods for inferring the properties of gravi-
tational wave sources from the signals they pro-
duce. In recent years, the application of neural
networks as data-driven surrogates for replacing
costly simulations and forward models has gained
popularity. In this paper, we focus on two machine
learning approaches, the Fourier Neural Mapping
and an Autoencoder, to approximate the complex
and computationally expensive mapping between
physical parameters (e.g. masses and spins) of
gravitational waves to observable strain signals.
Our methodology aims to exploit the intrinsic
low-dimensionality of this mapping and can be
validated through formulating a Bayesian inverse
problem, where a surrogate model is used to com-
pute a likelihood function and derive a posterior
distribution for parameter estimation. We find that
the Fourier Neural Mapping performs effectively,
showing a significant reduction in relative L2 er-
rors over time, whereas the autoencoder approach
struggles more as a lot of relevant information
is thrown away during dimensionality reduction.
We conclude that Fourier representations excel at
capturing such oscillatory signals, suggesting its
potential for future surrogate modeling efforts in
gravitational wave inference.

1. Introduction
As a direct consequence of Albert Einstein’s general the-
ory of relativity, gravitational waves are often described
as “ripples” generated from the acceleration of massive
objects with gravitational fields such as binary black hole
systems (Barausse & Coauthors, 2024). These ripples prop-
agate through the universe at the speed of light, carrying
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invaluable information about the fundamental nature of grav-
ity. The gravitational wave signal from a binary black hole
merger was first detected in 2015 by Laser Interferometer
Gravitational-Wave Observatory (LIGO), a groundbreaking
achievement that validated decades of theoretical predic-
tions (Abbott et al., 2016).

Figure 1. These ripples in spacetime propagate outward, carrying
information about the mass, spin, and dynamics of the merging
objects, as predicted by Einstein’s general theory of relativity
(Getty Images, 2024) (Abbott et al., 2016).

Gravitational waves carry a wealth of information about
their sources, including the masses, spins, and orbital dy-
namics. This paper will primarily concentrate on binary
black hole systems, in which the three most determining fac-
tors that govern the dynamics of the resulting waveforms are
the two aligned spin magnitudes and the mass ratio. These
factors directly affect the waveform’s frequency, amplitude,
and duration, which is crucial for understanding the prop-
erties of merging black holes (Tagawa et al., 2023). The
mass ratio determines each object’s relative contribution to
the system’s overall dynamics. A higher mass ratio implies
that one black hole dominates the system’s gravitational
influence, whereas a smaller ratio means that both objects
contribute equally to the dynamics. Meanwhile, the aligned
spin magnitudes quantify the extent to which the black holes’
spins are aligned with the orbital angular momentum. These
aligned spins showcase the orbital evolution of the system
and influence how quickly the black holes spiral toward
each other (Mapelli, 2020).

In the past few decades, gravitational wave inference has
become a popular area of research, as gravitational waves
carry important information that light or electromagnetic
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signals cannot provide (Escrig et al., 2024). However, ex-
tracting meaningful information from these signals remains
a challenging and computationally expensive task because
waveforms are highly non-linear and depend on a high-
dimensional input space. For binary black hole systems,
small changes in the input parameter such as mass can lead
to significant variations in waveforms, requiring extensive
computational power to explore the full parameter space
(Xiong et al., 2024).

To address these challenges, machine learning and data-
driven surrogate models provide an elegant yet robust ap-
proach to gravitational wave inference. Neural networks
such as a nonlinear ResNet have shown great promise for
learning in data-sparse environments (O’Leary-Roseberry
et al., 2021), offering a powerful framework for model-
ing complex relationships in high-dimensional spaces. By
exploiting the low-dimensionality representation of gravi-
tational waves, these neural networks can dramatically ac-
celerate the gravitational wave inference, making such in-
ference more computationally feasible. Our primary contri-
butions comprise of exploring two specific neural network-
based approaches to gravitational wave inference: Fourier
Neural Mappings (Tancik et al., 2020) and Autoencoders
(Michelucci, 2022). Both methods are designed to address
the computational bottlenecks associated with waveform
generation and parameter estimation, while potentially main-
taining accuracy and efficiency. Fourier Neural Mappings
have been shown to efficiently solve a family of PDEs whose
inputs and outputs may be continuous functions, and autoen-
coders are well-known for their dimensionality reduction
properties, so they represent promising avenues to help im-
prove surrogate models for gravitational wave inference
where waveforms are highly complex.

2. Related Work
Current literature on gravitational wave surrogate model-
ing and the usage of machine learning consist of a wide
variety of different approaches, ranging from regressions
to neural differential equations. Although each approach
has its own advantages and disadvantages, they all share the
common goal of learning from complex, high-dimensional
data and uncovering insights that may not be possible or are
too computationally expensive to achieve through conven-
tional modeling techniques. The models that perform the
best might incur high computational costs, but exploiting
samples from cheaper models has the potential of acceler-
ating inference and extracting general insights that may be
useful for more expensive models.

Numerical relativity (NR) simulations are widely recog-
nized as one of the most accurate method for generating
binary black hole gravitational waveforms. However, NR
simulations are extremely costly, making them impractical

for tasks such as parameter estimation. Thankfully, surro-
gate models based on NR waveforms have emerged as a
promising solution, offering both efficiency and accuracy
for gravitational wave inference. The intuition behind this
method is to leverage a set of precomputed NR waveforms to
extrapolate new waveforms according to post-Newtoninan
theory (Varma et al., 2019). This method begins by employ-
ing a greedy reduced basis approach, which systematically
selects a set of desired parameters. According to the train-
ing results, more greedy parameters implies higher accuracy.
With more than 120 greedy parameters, the mismatch will
be below 10−7. In this way, the project errors for the entire
dataset are guaranteed to be below the tolerance threshold.

Figure 2. The surrogate model has shown improved convergence to
the target waveforms as the number of greedy parameters increases.
This behavior further showcases the power of the greedy reduced
basis approach in selecting parameters that optimally represent
the underlying waveform space. As more greedy parameters are
incorporated, the projection errors across the dataset decrease sig-
nificantly, ensuring that the surrogate accurately approximates the
target waveforms. According to (Varma et al., 2019), with over 120
greedy parameters, the mismatch can be reduced to below 10−7,
demonstrating promising accuracy and reliability in reproducing
numerical relativity waveforms.

Building on the efficiency of surrogate models, the devel-
opment of efficient-one-body (EOB) models has further
advanced the field of gravitational wave inference (Nagar
et al., 2018). EOB models combine the analytical insights of
post-Newtonian theory with the numerical precision of NR
simulations, enabling accurate waveform generation over a
wide range of binary black hole systems. Moreover, recent
advancements, such as the inclusion of spin effects, tidal
interactions, and post-merger dynamics, have enhanced the
robustness of EOB frameworks for modeling complex sys-
tems. For example, TEOBResumS (an EOB-based model),
exemplifies these innovations by incorporating improved
descriptions of spin interactions and tidal effects, making it
a powerful tool for gravitational wave data analysis.

Previously, researchers pioneered the use of machine learn-

2



Gravitational Waves Inference

ing with Convolutional Neural Networks (CNNs), which
take time series input to be analyzed for detections and rep-
resentation of gravitational wave signals. This approach
is conventionally known as Deep Filtering, which was il-
lustrated using simulated LIGO noise (George & Huerta,
2018). This method can be extended and repurposed for
both detection and inference of gravitational waves from
binary black hole mergers through continuous data streams
from multiple LIGO detectors. CNNs for real-time gravi-
tational wave analysis can extend the existing gravitational
wave detection algorithm to higher dimensions and a deeper
parameter space, as the intrinsic scalability of neural net-
works can overcome the curse of dimensionality. Predicting
any number of parameters such as amplitude of waveforms
is as simple as adding an additional neuron for each new pa-
rameter to the final layer and training the noisy waveforms
with the corresponding labels (George & Huerta, 2018).

To handle the high dimensionality problem, researchers
have previously constructed a time-domain model for grav-
itational waveforms from binary black holes merged with
machine learning techniques, known as mlgw (Schmidt
et al., 2021). In particular, the waveform’s amplitude and
phase evolution are captured using principal component
analysis (PCA). Remarkably, a single waveform generation
is sped up by a factor of around 10 to 50, depending on the
binary mass and initial waveform’s frequency. Moreover,
mlgw displays a more concrete mathematical expression for
the waveforms and its gradients with respect to the orbital
parameters, which is useful for future gravitational wave
data analysis.

DINGO (Deep Inference for Gravitational-Wave Observa-
tions) (Dax et al., 2021) creates a new standard for fast-
and-accurate inference of physical parameters of detected
gravitational waves, enabling efficient data analysis without
compromising the accuracy. The main distinction between
DINGO and traditional methods lies in that neural networks
condition not only the event strain data d but also the PSD
of the detector noise Sn; in other words, q (θ|d, Sn) repre-
sents a conditional distribution that relies on the data and
the detector noise. Then with the GNPE (group equivariant
neural posterior estimation) approach, explicit knowledge
of time-translation symmetry can be used to simplify the
data representation and allow the neural network to focus
more on the nontrivial parameters.

Only a single time series of waveform data is necessary to
help reconstruct the equations of motion governing a binary
black hole system. With a class of differential equations
parameterized by feed-forward neural networks, a space
of mechanical models can be constructed and a physics-
informed constrained optimization problem can then be
created to minimize the waveform errors. With this data
driven approach, the waveform data can be an indicator of

Figure 3. The posterior distribution is illustrated in terms of an
invertible normalizing flow (orange), taking normally-distributed
random variables u into posterior samples θ. The flow itself de-
pends on a (compressed) representation of the noise properties Sn

and the data d, as well as an estimate τ1 of the coalescence time
in each detector I . The data are time-shifted by τ1 to simplify the
representation. (Dax et al., 2021)

the dynamics of binary black hole systems (Keith et al.,
2021). This approach is also applicable to various kinds
of environments such as the extreme and comparable mass
ratio systems in eccentric and non-eccentric orbits.

Another approach to deal with the high dimensionality issue
is to use a Mixture of Experts framework that divides
the parameter space of the binary black hole systems into
smaller regions and trains specific models on each localized
region (Schmidt et al., 2021; Jacobs et al., 1991). This is
especially useful, as it can learn time-domain parameterized
signals with high accuracy while reducing the computational
complexity compared to more traditional approaches. In
the most general setting (regression), Mixture of Experts
performs a weighted combination of L linear regressions as
follows (Schmidt et al., 2021):

y(x) =

L∑
l=1

(WTx)l ·
e(V

Tx)l∑L
l′=1 e

(V Tx)′l
.

The former term represents a linear regression, whereas
the latter term resembles the Softmax function (acts as a
gated mechanism), which essentially normalizes the output
to a probability distribution. Mixture of Experts is found
to maintain a good balance between “simplicity” and “flex-
ibility” and can be useful for future work where there are
hundreds of parameters.

3. Methodology
3.1. Overview

Conventionally, researchers have relied heavily on Bayesian
inference frameworks such as Bilby for gravitational wave
analysis. Bilby, a Bayesian inference library for perform-
ing parameter estimation, operates within a physics-driven
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paradigm, leveraging parameterized waveform templates
and Bayesian techniques to infer the properties of gravita-
tional wave signals, such as the masses, spins, and distances
of merging astrophysical objects. In recent years, driven
by advancements in machine learning and deep learning
techniques, data-driven surrogate models have emerged as
a promising alternative for gravitational wave inference.
Unlike traditional physics-based methods, data-driven ap-
proaches learn directly from the data source itself, bypassing
the need for precomputed frameworks. By learning patterns
directly from observed data, these models can generalize to
signals with noise or features not explicitly accounted for in
standard, structured methods. This flexibility has positioned
data-driven models as a new trend in gravitational wave
research, offering faster inference times and the potential to
uncover previously undetectable signals. In our work, we
only use Bilby to generate our training data instead of using
its built-in models — rather, we use our surrogate model for
training.

Figure 4. Comparison between Bilby models and data-based mod-
els for gravitational wave inference. Bilby models rely on post-
Newtonian approximations and effective-one-body (EOB) frame-
works to generate gravitational waveforms. These models incorpo-
rate physical insights and are often informed by numerical relativity
(NR) results to improve accuracy. In contrast, data-based models
leverage machine learning techniques and waveform datasets to
infer gravitational wave signals efficiently. While Bilby models
offer robustness grounded in theoretical physics, data-based mod-
els provide enhanced computational efficiency and the ability to
approximate complex waveforms without relying on explicit phys-
ical properties. This comparison highlights the trade-offs between
accuracy, interpretability, and computational cost when it comes
to selecting models for gravitational wave data analysis.

3.2. Spectrograms

Researchers commonly create spectrograms to improve the
visualization of gravitational waves, as they provide a clear
time-frequency representation of the signal. In addition to
plotting the time-domain and frequency-domain strains as
seen in Figure 5, spectrograms can help them understand
the dynamics of gravitational waves, specifically how the
frequency of gravitational wave signals evolves over time

(Dey et al., 2024). During the inspiral phase, for example,
the frequency of the waveforms will increase as two ob-
jects spiral closer to each other. This phenomenon is often
referred as a chirp signal, where both the frequency and
amplitude will increase until the two objects merge. Spectro-
grams can accurately capture these fluctuations, providing
a more intuitive understanding of the underlying physics
(Higashino & Tsujikawa, 2023).

To generate the waveform representations with spectro-
grams, we leverage GWpy, a Python package for gravi-
tational wave detection, and IMRPhenomXHM, a state-
of-the-art frequency-domain model for the inspiral, merger,
and ringdown of quasi-circular non-precessing black hole
binaries (Garcı́a-Quirós et al., 2020). The model is trained
with up to 90,000 waveforms, and the training accuracy is
calculated using the Wasserstein metric for each parame-
ter. These spectrograms, which encode the time-frequency
structure of the waveforms, can serve as the input to various
machine learning models, including our autoencoder.

Figure 5. The left plot illustrates the time-domain strain of a grav-
itational wave signal as a function of time. The signal first begins
with a low-frequency oscillation, corresponding to the inspiral
phase of two objects. The sharp rise at the end corresponds to the
coalescence and ringdown phases, where the system emits its most
powerful gravitational waves. The right plot shows the frequency-
domain strain of a gravitational wave signal. The sharp peak at
low frequencies corresponds to the dominant contributions from
the inspiral phase, where the frequency increases gradually as two
compact objects spiral inward. The amplitude decreases at higher
frequencies, displaying the late spiral and merger phases. Both
figures are generated using IMRPhenomXHM.

3.3. Autoencoders

Autoencoders, consisting of an encoder and a decoder, pro-
vide a robust approach to handle high-dimensional, noisy
datasets, making them particularly suitable for gravitational
wave analysis. They can effectively denoise irrelevant in-
formation, reduce the dimensionality of the waveforms, and
extract crucial features while preserving the essential struc-
ture of the data. In the context of gravitational wave in-
ference, the encoder compresses the waveform data into a
low-dimensional latent space. This latent space acts as a
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compact representation that captures only the fundamental
features of the waveforms, effectively filtering out noise and
redundancies. The decoder then reconstructs the original
waveforms from this low-dimensional representation, ensur-
ing that only the essential, noise-free features are retained.

Here, both the input and output of the autoencoder are the
spectrogram representations of the gravitational waveforms,
enabling a direct comparison between the original and recon-
structed waveforms. By analyzing the differences between
the input and output, we can assess how effectively the
model represents the waveforms and identify whether the
process of dimensionality reduction compromises any crit-
ical features of the signals. The key question we aim to
consider is: “Does the autoencoder’s compression of wave-
form data into a lower-dimensional space lead to the loss of
any important physical information?”

Figure 6. Starting with the spectrogram representation of a wave-
form, the model processes the data through an encoder to obtain
a low-dimensional latent representation. This coarse, nonlinear
representation is then passed through a decoder to reconstruct the
original image in an upscaled, nonlinear form.

Figure 7. This pseudocode illustrates the encoder architecture: a
2D convolution is applied to the spectrograms, followed by ReLU
activation and a max-pooling layer. The implementation is adapted
from the Udacity repository (Bank et al., 2021) and modified to
suit our specific data representations.

Figure 8. This pseudocode from the Udacity repository (Bank et al.,
2021) illustrates the decoder architecture. To match the dimension-
ality of matrix operations, a ConvTranspose2D operation is used
instead of Conv2D. In the final layer, a sigmoid activation replaces
the ReLU activation. The code also details the forward pass, which
first processes data through the encoder and then reconstructs the
original representation via the decoder.

3.4. Fourier Neural Mapping (FNM)

It is important to note that the usage of neural networks
intrinsically comes with some challenges, such as requiring
an immense amount of training data. However, FNMs are
designed to focus on exploiting the intrinsic structure of
data more efficiently, so they have the potential of requiring
less data compared to generic neural networks or autoen-
coders. In fact, FNMs are particularly effective for solving
problems involving smooth, oscillatory, or periodic signals
because they use Fourier features or operators to represent
the underlying functions. In our experimental setting, our
system parameters (x) are the mass ratio q and the aligned
spin magnitudes χ1 and χ2, while the theoretical waveforms
are the system outputs (y); we aim to learn the mapping
from x → y. Formally, for a sequence of layers {Lt}, and
mappings Q and S, we define the Fourier Neural Mapping
as the following composition:

Ψ(FNM) := Q ◦ G ◦ LT−1 ◦ · · · ◦ L2 ◦ D ◦ S.

In practice, G is known as the linear functional layer (maps
functions to vectors) and D is known as the linear decoder
layer (maps vectors to functions); hence, Ψ(FNM) maps vec-
tors to vectors. At a high level, the linear functional layer
G takes a vector-valued function and integrates it against
a fixed matrix-valued function to produce a finite vector
output. In contrast, the linear decoder layer D takes a finite
vector as input and multiplies it by a fixed matrix-valued
function to produce an output function (Huang et al., 2024).

Meanwhile, each Lt represents a nonlinear map (maps func-
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tions to functions), where

(Lt(v))(x) = σt

Wtv(x)︸ ︷︷ ︸
weight

+ (Ktv)(x)︸ ︷︷ ︸
convolution operator

+ bt(x)︸ ︷︷ ︸
bias

 .

for any input x. We assume that all nonlinear layers {Lt}Tt=1

have the same non-polynomial and globally Lipschitz acti-
vation function σ ∈ C∞(R;R). In our specific experiments,
we have S : R3 → Rd1 and Q : RdT → R2·data dimension,
where 3 represents the number of parameters (q, χ1, χ2)
and data dimension refers to the output dimension, which
can be calculated as

int(
duration · sampling frequency

2
) + 1.

To generate our parameters q, χ1, and χ2 for training our
FNM, we utilize Bilby (only for generating the data, not the
model). The mass ratio is sampled from a uniform distribu-
tion with minimum 0.5 and maximum 1, while χ1 and χ2

are taken from a uniform prior distribution with minimum 0
and maximum 0.99 for the aligned component of the spins1.
Our training set consists of 1000 triples (q, χ1, χ2); in the
future, we hope to expand our analysis to include a larger
training dataset.

Figure 9. Fourier Neural Mappings (FNMs) generalize Fourier
Neural Operators (FNOs) by allowing the input and output spaces
to be finite-dimensional. In our experiment setting, we use the
V2V mapping as our input space (parameters) and output space
(spectrograms) are finite-dimensional. (Huang et al., 2024)

The forward pass of the implementation is shown in Fig-
ure 10. The way we train our surrogate FNM model is then
by comparing ypredicted = Ψ(FNM)(x) with the theoretical
waveforms ytrue generated using IMRPhenomXHM. Note
that since the waveforms initially consist of complex val-
ues, we transform our outputs into a multi-channel image as
follows:

Real Imaginary
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn



 .

1lscsoft.docs.ligo.org/bilby/api/bilby.gw.prior.AlignedSpin.html

Figure 10. Pseudocode for the FNM implementation. Each corre-
sponding layer/mapping is color-coded in green. For the Q and
S mappings, we have a pointwise single hidden layer of a fully-
connected neural network. We have a linear decoder layer for D
and a linear functional layer for G. Note that self.speconvs refers
to the Fourier integral operator layer. Our code is based off of
https://github.com/nickhnelsen/fourier-neural-mappings (Huang
et al., 2024) and modified to adapt to our data representation.

Lastly, since loss functions in the built-in torch.nn mod-
ule do not support complex values, we developed our own
custom relative L2 loss metric as follows:

relative L2 loss =

√∑n
i=1 |ytrue,i − ypred,i|2√∑n

i=1 |ytrue,i|2

We chose the relative L2 loss metric because it scales the er-
ror relative to the magnitude of the true waveform, which en-
sures that the loss does not disproportionately favor signals
with much larger magnitudes. Additionally, since Fourier
neural mappings are proficient in handling oscillatory sig-
nals, the relative L2 loss can penalize deviations across all
parts of the waveform while considering periodicity and
structure.

3.5. Bayesian Inverse Problem (BIP)

As gravitational waves consist of noisy observations, we
aim to infer the properties of the sources that produced such
observations. This objective involves solving a Bayesian
inverse problem (BIP), where the ultimate goal is to infer
the source parameters. In other words, the objective is to
estimate the unknown inputs of a system from its known
outputs. Solving a BIP requires a forward model (such as
the Fourier Neural Mapping) that maps the parameters of
interest to the corresponding observable quantities.

A critical assumption in Bayesian inverse problems is that
our observed data d, which in our case is assumed to be the
waveforms, can be expressed as the sum of a forward model
f(θ) evaluated at the model parameters θ and a Gaussian
noise η ∼ N (0,Γn), where Γ denotes the noise covari-
ance matrix: d = f(θ) + η. For simplicity, we assume
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that Γ = σ2I , where I is the identity matrix and σ2 is a
scalar representing the noise variance, although other works
have considered Γ as a nontrivial covariance operator with
different noise variances at different data points.

In contrast to a deterministic inverse problem (i.e. where we
want to find θ∗ = argminθ||d− f(θ)||2), the ultimate goal
of Bayesian inverse problems is to characterize the posterior
distribution, which by Bayes’ theorem can be formulated
as:

πpost(θ|d) =
L(d|θ) · πpr(θ)

π(d)
=

L(d|θ)πpr(θ)∫
L(d|θ′)πpr(θ′)dθ′

,

where π(d) is the evidence (i.e. marginal likelihood) and
πpr(θ) refers to the prior distribution reflecting any prelimi-
nary information regarding the model parameters (does not
depend on d). We also have a likelihood function L(d|θ),
defined as follows:

L(d|θ) = 1

(2π)n/2|Γ|1/2
exp

(
−1

2
(d− f(θ))TΓ−1(d− f(θ))

)
.

As our surrogate models act as efficient approximations of
expensive-to-compute simulations, we can pair the observed
waveform data with the model predictions to evaluate the
likelihood function L(d|θ) in the Bayesian inverse prob-
lem. Then, with the posterior distribution πpost(θ|d), we
can perform standard sampling techniques such as Markov
Chain Monte Carlo (MCMC), Nested Sampling, or Varia-
tional Transport to sample an independent and identically
distributed (i.i.d.) set {θi}Ni=1, which can help us understand
the source parameters better (Saleh et al., 2024). With multi-
ple different surrogate models, we can then sample different
sets from various posterior distributions and measure the
statistical distance D of these distributions through metrics
like Jensen-Shannon, Wasserstein, and KL-divergence:

D({θi}p, {θi}q) → R ∀ 1 ≤ p, q ≤ n.

The primary computational challenge in Bayesian inference
lies in the process of repeatedly evaluating the potentially
costly model f(θ) many times during the sample generation
process.

4. Results
Using our custom L2 loss metric, we can see that our FNM
surrogate model was able to train quite well as shown in Fig-
ure 12. The optimal set of hyperparameters we found for this
model with the Adam optimizer was a learning rate of 0.001
and a batch size of 100. We set the duration and sampling
frequency parameters to be 8 and 2048, respectively, which
corresponds to a data dimension of 8×2048

2 + 1 = 8193.

On the other hand, our autoencoder was able to train success-
fully, but there was minimal improvement after around 500

epochs (Figure 13), regardless of our choice of hyperparame-
ters. In fact, by visually comparing the reconstructed output
generated by the autoencoder with the original spectrograms
(Figure 11), we can see that the the original spectrograms ap-
pear to have more detailed structures and patterns, whereas
the reconstructions contain more blurred and noisy features.

Figure 11. The autoencoder struggles to capture fine-grained fea-
tures of the input, which is especially important for complex sig-
nals like gravitational waveforms. It appears that while the general
shape of the spectrogram is retained, some features are lost in the
reconstruction process.

Because our autoencoder pipeline involves the spectrogram
representation, and the pixel values in the spectrograms
are the power of each signal at each time, we concluded
that the phase evolution is much more informative than the
amplitude so a lot of relevant information must have been
thrown away by the dimensionality reduction. Therefore,
it might actually be beneficial to have multiple images per
waveform to help capture all of the necessary information,
and we can still use the autoencoder output to represent
them.

5. Conclusion
In conclusion, we have found that the Fourier Neural Map-
ping works well as a surrogate model for Bayesian inference.
Because the relative L2 loss continues to decrease quite sub-
stantially after 1000 epochs, we are convinced that our FNM
model predictions would pair well with the theoretically ob-
served waveform data, which we can then use to evaluate the
likelihood function in a BIP. However, we also discovered
that autoencoders and convolutional neural networks in gen-
eral can really struggle with the waveform data. Therefore,
more robust dimensionality reduction techniques that can re-
tain some information on the phase amplitude of waveforms
will need to be explored.
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Figure 12. The relative L2 errors upon training our FNM. Although
there appears to be some fluctuation due to the intrinsic noisiness
of gravitational waves, the error is steadily decreasing. After 1000
epochs, the loss goes to around 10−1.7 ≈ 0.02.

5.1. Limitations

Currently, our approach is constrained by the available com-
puting resources, limiting the number of epochs we can
train for and the dimension of the data we can handle. Ad-
ditionally, we are focusing primarily on a small subset of
parameters—namely, q, χ1, and χ2—which restricts the
scope of our analysis. While these parameters are critical for
gravitational wave inference, there are other important fac-
tors that have not been included in the current model. This
limitation in the parameter space may hinder the model’s
overall ability to fully capture the complexity of real-world
gravitational wave data.

5.2. Future Work

With increased computing resources, the next steps will in-
volve training the model over a larger number of epochs,
allowing for a more refined learning process, and potentially
expanding the data dimension to improve model perfor-
mance. As we found that the autoencoder can struggle with
reconstructing the spectrograms, we are looking into the
continuous short-time Fourier transform (which is what is
used to build the spectrograms in the first place), so that
we can keep the phase information and avoid taking ab-
solute values (power of the signal which is what is stored
in the spectrograms). We are also considering alternative
formats besides spectrograms to represent and retain all the
necessary information on our waveform data. We plan to
explore alternative surrogate models that utilize more ad-
vanced methods for learning mappings between different
vector spaces. Additionally, we aim to investigate whether
other loss functions capable of handling complex values

Figure 13. The relative L2 loss during the training of our autoen-
coder. The loss decreases significantly within the initial epochs,
indicating that the model quickly learns to capture key features of
the data. However, after approximately 1000 epochs, the loss stabi-
lizes and plateaus at a value of around 0.09. This behavior suggests
that the autoencoder has reached its optimal learning capacity and
further training would likely provide minimal improvement.

could improve the model’s effectiveness. With more time,
we also intend to actually implement a Bayesian inverse
problem framework to validate the surrogate model’s find-
ings. Lastly, future work should extend our analysis to
include all relevant parameters (right ascension, declination,
luminosity distance, etc.) for gravitational wave inference,
which, for most models, involves around 15 parameters
in real-world data, providing a more comprehensive and
accurate representation.

5.3. Applications

Data-based models of gravitational waves leverage machine
learning and statistical techniques to analyze the complex
signals detected by gravitational wave observatories such as
LIGO. These models are particularly effective in extracting
and learning the physical source parameters from noisy, real-
world data, whereas traditional analytical models such as
Bilby may struggle due to the complexity of the signals. By
training on datasets of simulated gravitational waveforms,
data-based surrogate models can accurately identify impor-
tant features without the need of computationally expensive
resources. These models can also help improve the sensitiv-
ity and efficiency of gravitational wave searches, enabling
the detection of faint and rare events that might otherwise
be unnoticed (Okounkova et al., 2023). Furthermore, data-
based approaches like the FNM we explored can help refine
waveform templates used for parameter estimation, facilitat-
ing the real-time analysis of gravitational wave detections.
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